KRC for Europa
Contents |
Notes
Water ice is the default material for Europa (Mat1 = "H2O"), and T_user = 100 (temperature at which the inertia is defined).
Some parameters are set to realistic values by default, including:
- Mat1 = "H2O" which assigns water ice Cp, Density, and Conductivity properties
- Mat2 = "H2O" which assigns water ice Cp, Density, and Conductivity properties
- ALBEDO = 0.67
- PTOTAL = 0 which eliminates the atmosphere (ELEV, TAU, etc. unused)
When running the DaVinci interface, default Mars atmospheric values might be printed on the screen but not effectively used (PTOTAL = 0.)
Simple Cases
Basic surface temperatures for Europa:
OUT = krc(lat=0,INERTIA=45.,body="Europa",ALBEDO=.55,LKofT="F")
Example of simple diurnal temperature curve
labelxy("LTST","Temperature [K]") plot(OUT.tsurf[,1,1],xaxis=OUT.time,"45 Kieffer, No Flux",w=2,color=2)
Planetary Flux (From Jupiter)
To include the visible and thermal infrared flux from Jupiter, three approaches are possible:
1: Use default built-in parameters, set PFlux = "T", and Lon_Hr
- Lon_Hr [0-24] is the surface longitude relative to the sub-Jupiter point, expressed in hours.
- When Lon_Hr < 6, the surface point is on the Antijovian hemisphere => No flux contributed.
- When 6 < Lon_Hr < 18, the surface point is on the subjoin hemisphere => Flux is contributed (max at Lon_Hr = 12.).
- When Lon_Hr > 18, the surface point is on the Antijovian hemisphere => No flux contributed.
dv> OUT = krc(lat=0.,INERTIA=70.,body="Europa",ALBEDO=.55,PFlux="T",Lon_Hr=12.,LKofT="F")
2: Provide values for all the necessary input parameters, and set PFlux = "T" (Default provided for common bodies)
- BT_Avg : Average Brightness Temperature [K]
- BT_Min : Min Brightness Temperature, if diurnal cycle [K]
- BT_Max : Max Brightness Temperature [K]
- Dis_AU : Distance from Sun in AU
- Geom_alb : Geometric Albedo [1]
- Mut_Period : Mutual Period [?]
- Orb_Radius : Orbiting Radius [km]
- Radius : Radius of the Obiting body [km]
- Lon_Hr : Longitude Hour of the surface point (see above)
OUT = krc(lat=0.,INERTIA=70.,body="Europa",ALBEDO=.55,PFlux="T",BT_Avg=127.,BT_Min=127.,BT_Max=127.,Dis_AU=5.203,Geom_alb=0.52,Mut_Period=3.55,Orb_Radius=670900,Radius=670900,Lon_Hr=12.,LKofT="F")
3: Provide Visible and IR flux tables vs. LTST, and set PFlux = "T"
- The interface fits sin functions through the table values, and extracts parameters required by KRC (amplitude, phase, etc.). For Europa, this is not the preferred option.
- IR: A 2 x n x 1 array with IR flux (1st col.) vs. LTST (2nd col.)
- Vis: A 2 x n x 1 array with Vis flux (1st col.) vs. LTST (2nd col.)
dv> OUT = krc(lat=0.,INERTIA=70.,body="Europa",ALBEDO=.55,PFlux="T",Lon_Hr=12.,LKofT="F")
Comparison between simple diurnal temperature curves (with vs. without Jupiter flux)
OUT_2 = krc(lat=0,INERTIA=70.,body="Europa",ALBEDO=.55, LKofT="F") OUT_3 = krc(lat=0.,INERTIA=70.,body="Europa",ALBEDO=.55,PFlux="T",Lon_Hr=12.,LKofT="F") labelxy("LTST","Temperature [K]") plot(OUT_2.tsurf[,1,1],xaxis=OUT_2.time,"70 Kieffer, No Flux",w=2,color=2,OUT_3.tsurf[,1,1],xaxis=OUT_3.time,"70 Kieffer,With Flux",w=2,color=3)
Eclipse by Jupiter
To include an Eclipse by Jupiter, set Eclipse = "T" and specify the following parameters:
- Eclipse = "T" forces an eclipse (Default = "F")
- body = "Europa"
- Eclipser = "Jupiter" Eclipser name, for Example "Jupiter" or "Mars"
- Eclipse_Style = 1 because eclipses are assumed to occur daily; see dedicated Eclipse Section [Build Link Here]
- Ecl_Cent_Hr: Eclipse central hour [subjovian point => =12.; Antijovian point => =0.]
- Bias = 0.0: Eclipse Bias (0 => perfect alignement; 1 => partial eclipse); see dedicated Eclipse Section [Build Link Here]
- Date: ???
OUT = krc(lat=0.,INERTIA=45.,N1=32,body="Europa",N24=96,Eclipse="T",Eclipser="Jupiter",Ecl_Cent_Hr=12.,Bias=0.,Eclipse_Style=1.,Date=5000.)
Example of Europa diurnal curve with Jupiter Eclipse centered at Noon
labelxy("LTST","Temperature [K]","45 Kieffer, Eclipse centered at Noon") plot(OUT.tsurf[,1,1],xaxis=OUT.time,"Noon Eclipse")
Defining a Date
Seasons can be defined as Ls (ls), Julian Date (JD), and Gregorian Date (GD):
OUT = krc(body="Europa",lat=25.,ls=90.)
For a specific Gregorian Date, GD (currently ranging from 1990-Jan-01 to 2040-Jan-01), the format is ????-Mmm-DD, with Mmm:Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec;
OUT = krc(body="Europa",lat=12.,GD="2010-Jan-05")
or a specific Julian Date JD:
OUT = krc(body="Europa",lat=12.,JD=2455201)
Note: the possibility to specify the date with GD is only currently available for Mars, the Moon, Bennu, and Europa.