Condensable Atmosphere
The coefficients for the saturation temperature relation for the condensing gas are now input parameters. KRC uses the Clausius-Clapeyron relation:
- ln P = a - b/T
where P is pressure in Pascal and T is temperature in Kelvin.
This should be useful for Mars, Titan, Pluto etc.
- SatPrA correspond to the Clausius-Clapeyron coefficient 'a'.
- SatPrB corresponds to the Clausius-Clapeyron coeffcient 'b'.
- LVFT = "T"
Values for CO2 are a = 27.9546 and b = 3182.48 (Provided by HHK, most likely from the Mars book). Values for N2 are a = 9.2338 and b = -724.9720 (Derived by SP using this table: File:Clausius Clapeyron.xlsx
The proper molecular weight should be input AMW. The Mass-fraction of mean atmosphere that is non-condensing should also be specified with FANON.
Mars
SatPrB = 3182.48 SatPrA = 27.9546 AMW = 43.54 #SP's own calculation FANON = 0.040 #Paul R. Mahaffy, Science 2013 (SAM) KPREF = 1
out_1 = krc(lat=72.,SatPrA=27.9546,SatPrB=3182.48,AMW=43.54,FANON=0.040,KPREF=1,LVFT="T" ) out_2 = krc(lat=72.,TFROST=151.)
Pluto
SatPrB = 9.2338 SatPrA = -724.9720 AMW = 27. FANON = 0.1 KPREF = 0
Titan
SatPrB = 9.2338 SatPrA = -724.9720 AMW = 28.8 FANON = 0.016 KPREF = 0
KRC function: KRC_Cond_Gas()
JBARE forces frost free at specified season. Default JBARE=0. (no forcing when = 0.)
JBARE corresponds to a CROCUS date, in Ls.
Note: the interface facilitates the use of JBARE so that JBARE ~ CROCUS date (Ls), but KRC has a more complex definition.
out_1 = krc(lat = 75.) out_2 = krc(lat = 75, JBARE = 85.)