KRC supporting material

Hugh H. Kieffer File = /xtex/tes/krc/port.tex

January 25, 2010

Contents

1	Introduction	1
2	Binary file format	2
3	Helplist	3
4	Evolution log of KRC	18
5	Testing temperature dependant conductivity	21
6	Liens on KRC system or code	24
7	Code details	26
8	IDL interface	26
9	Development notes	27
	9.0.1 2003jan23	27
	9.0.2 2004jul05	27
	9.0.3 2004Jul11	27
	9.0.4 2006sep09	28
	9.0.5 2009mar11	28
	$9.0.6 2009 \text{dec} 24 \dots $	29
	9.0.7 2010jan09	29
	9.0.8 2010jan22	29
	9.1 Mar 11 2009 puzzels	30
10) files to consider	31
11	Make notes	31

1 Introduction

This document is a compilation of what had been various separate files of notes about the KRC system. The level of formality ranges widely!

Liens on documentation: update IDL routines in helplist

2 Binary file format

Other than direct access files, binary output files are in "bin5" format, described below. None contain the optional free text section.

Description of the "bin5" file system Hugh Kieffer 2002sep02

The bin5 file system is designed to allow transfer of binary arrays between different languages, operating systems and hardware types. Each bin5 file contains a leading 512 byte (or multiple thereof) region that is ASCII text and describes the array which follows it.

The first few words are integers separated by spaces, these define the array size and type The first integer is the number of dimensions to the array, N. The next N integers are the sizes of each dimension, in the order of most-rapidly varying index first,

Then comes an integer that defines the word type; this follow the IDL convention. Values greater than 4 are not supported in Fortran as of 2002sep.

1 Byte 2 Integer 3 Longword integer 4 Floating point 5 Double-precision floating 6 Complex floating 7 String 8 Structure 9 Double-precision complex 10 Pointer 11 Object reference 12 Unsigned Integer 13 Unsigned Longword Integer 14 64-bit Integer Unsigned 64-bit Integer 15

The next integer is the number of elements in the array, this is redundant with the product of the dimension sizes.

Files written after 1999march should have a final integer that indicates the number of leading ASCII bytes in the file; this is always a multiple of 512.

Next is some text bounded by << .. >>; the first part will usually be "<<IDL_SIZE + headlen " , the latter part should be the creation date of the file, e.g.," Tue Jul 9 05:08:18 2002 >>"

This is followed by the "header", which is free text describing the file. Files from Hugh Kieffer may contain Keyword=value sections and/or embedded small arrays. Embedded arrays use a separator, such as |,#, or ^, between each element, the separator is doubled to indicate the limits of the embedded array. E.g., Geom=||7.|0.|7.|0.|0.|1.|| Such arrays are created/read by strum.pro

The last 5 bytes of the ASCII section should always be "C_END"; these should be immediately preceeded by a 5- or 8-byte indication of the source hardware architecture, e.g. "x86 ".

It may be convenient to define an alias to look at the ASCII section: alias bhead 'dd count=1 if=\!*' # display first 512 bytes of one binary file alias bhead2 'dd count=2 if=\!*' # display first 1024 bytes of one binary file

The Flagstaff group has software for writing/reading bin5 files in IDL, Fortran and C.

Example:

2 32 2 4 64 512 <<IDL_SIZE + headlen Tue Jul 9 05:08:18 2002 >>synmoonspec: Multiply factor for ROLO irrad model r311f and Solar model= solar_bb. Synthetic spectrum: Match mean and StdDev of Apollo with Breccia fraction: 0.05. Geom= ||7.|0.|7.|0.|0.|1.||

x86 C_END

This example defines a single-precision floating-point array sized (32,2)

3 Helplist

A guide to setting up the input file is contained in *helplist.tex*, which is maintained as a plain text file for easy access. It is also included here.

KRC: PLANETARY SURFACE TEMPERATURES HELPLIST.TXT 2009 Feb Hugh Kieffer. Original code ~1969, many revisions.

Major changes:

2002jul12-17 Replace atmosphere with Delta-Eddington model, and atmospheric temperature based on solar and IR energy balance.

2008nov-2009feb Add capability for temperature-dependant thermal conductivity; and revision of KRCCOM.

The evolution of KRC code is contained in evolve.txt.

METHOD

See the LaTeX document for a more detailed description: tes/krc/jpap.tex

Program is designed to compute surface and subsurface temperatures for a global

set of latitudes at a full set of seasons, with enough depth to capture the annual thermal wave, and to compute seasonal condensation mass. For historic reasons, the code has substantial optimization. There are generalities that allow this code set to be used for any solid body with any spin vector, in any orbit (around any star); this is also the source of some of the complexity.

Method is explicit forward finite differences with exponentially increasing layer thickness and binary time increase with depths where allowed by stability. Depth parameter is scaled to the diurnal thermal skin depth. Initially starts at 18 hours with the mean temperature of a perfect conductor. Second degree perturbation is applied at the end (midnight) of the (third) day; this jumps the mean temperature of all layers and the lower boundary to equal the mean surface temperature.

Boundary condition treatment: Perturbation solution of quartic equation at surface for each iteration; temperature gradient assumed uniform in top interval. Lower boundary may be insulating or constant-temperature.

Atmospheric Radiation:

KRC uses a one-layer atmosphere that is grey in both the solar and infra-red regions. parametric atmosphere. The default atmospheric parameters are based on estimates of Mars' gas and aerosol properties.

Delta-Eddington model for insolation; direct onto sloped surface and diffuse, with possible twilight extension.

Atmosphere temperature based on Delta-Eddington solar absorption and IR opacity [Pre 2002jul16 $\,$

First-order treatment of scattering of solar radiation.

Diurnal temperature is modeled as sinusoidal with phase shift.]

Keplerian orbital motion; seasons are at uniform increments of time. Mean orbital elements are pre-calculated for any epoch (all planets and several comets) by the PORB code set.

Units are SI; days for orbital motion. (Revised from cal-cgs, 97july)

Options:

Different Physical properties below a set layer (IC). Regional slope Three ways to handle seasonal global pressure variation

Atmosphere condensation:

Global integral of CO2 frost-gas budget can control surface pressure. Allows different surface elevation for each latitude zone. Zonal frost saturation temperature tracks local surface pressure.

Option for cap albedo to depend upon mean daily insolation.

CONVERGENCE NOTES

Convergence prediction routine can't jump more than one time constant (TAU=X**2/2) for the total thickness. Therefore, if X(N1) is small, make DDT smaller than usual. If DELJUL is much smaller than (X(N1))**2/2, then DDT can be as large as 0.3. Otherwise DDT must be about 0 for the prediction routine to work well (it assumes the 3rd derivative to be 0).

All parameters for KRC are set by a formatted text file. An example is master.inp , which has default values for a 19 latitude set for a run of three martian years, with the last output to disk. Parameter values are listed below their titles, which are in many cases identical to the code name, and last charater of the title is above the last location in the field. Thus, integer values MUST be aligned. Titles with a leading "[" indicate that the value is not used. The recommended procedure is to copy master.inp and edit only the values you wish to change. The number of lines of Latitudes and Elevations must match the value of N4, e.g., 2 lines for N4=11:20, entries beyond the N4 position may be left blank or contain the end of the line. The 13 lines following Elevations are a geometry matrix for Mars orientation and orbit in 2005, and should not be touched; they can be replaced by running PORBMN carefully.

The first input line is always KOLD, KEEP (I*), which sets file usage.

These are described near the end of this help file under DISK BINARY FILES. The second line is free text where you can outline the purpose of your run. If KOLD=0, then a full set of input values is read.

Change lines may follow immediately after the geometry matrix (see PARAMETER CHANGES section below) . The end of definition of a "case" is indicated by a "0/" line. Two successive "0/" lines ends the run.

Items with numbers inset 2 spaces below are computed, not input. The source code for 'krccom.inc' indicates which subroutine sets many of the parameters; as the routine name in lowercase just below the parameter name.

Type 4 Title (20A4) 80 characters of anything to appear at top of each page.

Surface Properties 1 ALB Surface albedo 2 EMIS Surface emissivity 3 SKRC Surface thermal inertia [J $m^{-2} s^{-1/2} K^{-1}$] { cal cm * 4.184e4} 4 COND2 Lower material conductivity (IC>0) 5 DENS2 Lower material density (IC>0) 6 PERIOD Length of solar day in days (of 86400 seconds) 7 SPHT Surface specific heat [J/(kg K)] {cal/(g K) * 4184.} 8 DENS Surface density [kg/m³] {g/cubic cm. *10} _ _ _ _ _ _ _ _ _ _ _ _ Atmospheric Properties 9 CABR Atmospheric infrared back radiation coefficient 2002jul16 IR opacity of dust-free atmosphere 10 AMW Molecular weight of the atmosphere 11 [ABRPHA UNUSED [Phase of ABRAMP, degrees relative to midnight] 12 PTOTAL Global annual mean surface pressure at 0 elev., Pascal[=.01mb] 13 FANON Mass-fraction of mean atmosphere that is non-condensing 14 TATM Atm temp for scale-height calculations - - - - - -15 TDEEP Fixed bottom temperature. Used if IB<=1. 16 SPHT2 Lower material specific heat (IC>0) Dust & Slope Properties 17 TAUD Mean visible opacity of dust, solar wavelengths 18 DUSTA Single scattering albedo of dust

```
19 TAURAT Ratio of thermal to visible opacity of dust
20 TWILI Twilight extension angle [deg]
21 ARC2 Henyey-Greenstein asymmetry factor
        = eclipse start time in local Hours
 moon
22 [ARC3 NOT USED coeff. for planetary heating
 moon
            = eclipse duration in seconds 0=no eclipse
23 SLOPE Ground slope, degrees dip. Only pit may slope beyond pole.
24 SLOAZI Slope azimuth, degrees east from north. <-360 is a pit
Frost Properties
25 TFROST Minimum Frost saturation temperature
 may be overridden by local saturation temperature (LVFT)
26 CFROST Frost latent heat [J/kg] {cal/gm*4184. [Not used if
27 AFROST Frost albedo, may be overridden (LVFA) [ TFROST never
28 FEMIS Frost emissivity
                        [ reached
29 AF1 constant term in linear relation of albedo to solar flux
30 AF2 linear term in relation of albedo to solar flux units=1/flux
  Afrost = AF1 + AF2 * <cos incidence> SOLCON / DAU^2
31 FROEXT Frost required for unity scattering attenuation coeff. [kg/m<sup>2</sup>]
              the greater of this and 0.01 is always used.
32 fd32 UNUSED
Thermal Solution Parameters
33 RLAY Layer thickness ratio
34 FLAY First layer thickness (in skin depths)
35 CONVF Safety factor for classical numerical convergence
O for no binary time division of lower layers
>0.8 for binary time division. Larger is more conservative
36 DEPTH Total model depth (scaled) (overrides FLAY if not 0.)
37 DRSET Perturbation factor in jump convergence. If = 0., then
 all layers reset to same average as surface layer. Else,
                does quadratic curve between surface and bottom averages
38 DDT Convergence limit of temperature RMS 2nd differences
39 GGT Surface boundary condition iteration test on temperature
40 DTMAX Convergence test: RMS layer T changes in a day
Orbit Geometry & Constants
41 DJUL Starting Julian date of run -2440000(N5>0)
42 DELJUL Increment between seasons in Julian days (if N5>1)
43 SDEC Solar declination in degrees. (if N5=0)
44 DAU Distance from Sun in astronomical units (if N5=0)
45 SUBS Aerocentric longitude of Sun, in degrees. For printout
 only. Computed from date unless N5=0(for printout only)
46 SOLCON Solar constant Applied Optics 1977 v.16, p.2693: 1367.9 W/m<sup>2</sup>
                  1366.2 Based on figure in Frohlich, Observations of
   irradiance variations, Space Sci. Rev.,94,15-24,2000
47 GRAV Surface gravity. MKS-units
48 AtmCp Specific heat at constant pressure of the atmosphere [J/kg/K]
Temperature dependent conductivity. Ignored unless LKOFT set.
      CONUPO Constant coef for upper material
49
      CONUP1 Linear in k=c0+c1x+c2x^2+c3x^3 where x=(T-220)*0.01
50
      CONUP2 Quadratic
51
52
      CONUP3 Cubic coeff. "
53
      CONLOO Constant coef for lower material
54
    CONLO1 Linear as for CONUP above
```

```
55
      CONLO2 Quadratic
      CONLO3 Cubic coeff. "
56
COMPUTED REAL*4 VALUE
       HUGE = 3.3E38 nearly largest REAL*4 value
 57
 58
       TINY = 2.0E-38 nearly smallest REAL*4 value
 59
       EXPMIN = 86.80 neg exponent that would almost cause underflow
 60
       fd60(2) Spare
 61
 62
       RGAS = 8.3145 ideal gas constant (MKS=J/mol/K)
 63
       TATMIN Atmosphere saturation temperature
 64
       PRES
               Local surface pressure at current season
 65
       OPACITY Solar opacity for current elevation and season
 66
             current thermal opacity at the zenith
       TAUIR
       TAUEFF effective current thermal opacity
 67
 68
       TATMJ
               One-layer atmosphere temperature
 69 SKYFAC fraction of upper hemisphere that is sky
 70 TFNOW frost condensation temperature at current latitude
 71 AFNOW frost albedo at current latitude
 72 PZREF Current surface pressure at 0 elevation, [Pascal]
 73 SUMF Global average columnar mass of frost [MKS]
 74 TEQUIL Equilibrium temperature ( no diurnal variation)
 75 TBLOW Numerical limit (Blowup) temperature
 76 HOURO Output Hour requested for "one-point" model
 77 SCALEH Atmospheric scale height
 78 BETA Atmospheric IR absorption
 79 DJU5 Current Julian date (offset 2440000 ala PORB convention)
 80 DAM Half length of daylight in degrees
 81 EFROST Frost on the ground at current latitude [kg/m<sup>2</sup>] {g/cm<sup>2</sup> * 10.}
 82 DLAT Current latitude
 83 COND Top material Thermal conductivity (for printout only)
 84 DIFFU Top material Thermal diffusivity (for printout only)
 85 SCALE Top material Diurnal skin depth (for printout only)
 86 PI pi
 87 SIGSB Stephan-Boltzman constant (set in KRC)
 88 RAD Degrees/radian
1 N1 # layers (including fake first layer) (lim MAXN1)
2 N2 # 'times' per day (lim MAXN2). Must be an even number,
 should be a multiple of N24 and NMHA.
3 N3 Maximum # days to iterate for solution (lim MAXN3)
 98sep03 This can be 1, but then must use DELJUL ~= PERIOD
If N3 lt 3, first day starts on midnight. else at 18H
4 N4 # latitudes (lim MAXN4=19). Global integrations done for N4>8
5 N5 # 'seasons' total for this run. If 0, then DAU and SDEC will be
used as entered for a single season.
6 N24 # 'hours' per day stored, should be divisior of N2 (lim MAXNH)
7 IB Bottom control: 0=insulating, 1=constant temperature
 2=start all layers =TDEEP & constant temperature
8 IC First layer (remember that 1 is air) of changed properties.
 0 or 999=homogeneous, or 3 to N1-2
_ _ _ _ _ _
9 NRSET # days before reset of lower layers; >N3=no reset
10 NMHA # 'hour angles' per day for printout (no limit)
```

11 NRUN Run #; appears in some printout 12 JDISK Season count that disk output is to begin 13 IDOWN Season at which to read change cards 14 I14 Index in FD of flexible print 15 I15 "" 16 KPREF Mean global pressure control. O=constant 1= follows Viking Lander curve 2=reduced by global frost, but then N4 must be >8, and latitudes must be monotonic increasing and must include both polar regions (no warning for your failure) 17 K40UT Disk output control: See details in DISK BINARY FILES section Three modes of direct access Fortran files; one case per file. -=KRCCOM(once), then TSF & TPF; O=KRCCOM,LATCOM each season 1:49=KRCCOM, DAYCOM for the last latitude; each season Modes of bin5 file for multiple cases 51=(Hours, 2 min/max, lat, seasons, cases) 52=(hours, 7 items, lat, seasons, cases) 54=[many seasons, 5 items, lats, cases] 55=[many seasons,9 items, cases] 56=[packed T hour and depth, latitude, season, case] 18 JBARE J5 season count at end of which to set frost amount to 0. 0=never 19 NMOD Spacing of season for notification. minimum of 1 20 IDISK2 NOPE Season count at which to reset deep layer temperatures COMPUTED I*4 VALUES 21 KOLD Season index for reading starting conditions id22(6) 22 and 23 used as flags for season-variable ALB and TAUD 22 28 NFD Number of real items read in 39 NID Number of integer items read in 30 NLD Number of logical items read in 31 N1M1 Temperature vrs depth printout limit (N1-1) 32 NLW Temperature vrs depth printout increment 33 JJO Index of starting time of first day 34 KKK Total # separately timed layers 35 N1PIB N1+IB Used to control reset of lowest layer 36 NCASE Count of input parameter sets in one run 37 J2 Index of current time of day 38 J3 Index of current day of iteration 39 J4 Index of current latitude 40 J5 Index of current "season" 1 LP1 Print program description. TPRINT(1) 2 LP2 Print all parameters and change cards (2) 3 LP3 Print hourly conditions on last day (3) 4 LP4 Print daily convergence summary (4) 5 LP5 Print latitude summary (5) 6 LP6 Print TMIN and TMAX versus latitude and layer (6) 7 LPGLOB Print global parameters each season 8 LVFA Use variable frost albedo. Uses AF1 & AF2 (real # 29,30) 9 LVFT Use variable frost temperatures 10 LKOFT Use temperature-dependent conductivity

11 LPORB Call PORB1 just after full input set 12 LKEY Read change item from terminal after main input set 13 LSC Read change cards from input file at start of each season 14 LNOTIF spare 15 LOCAL Use each layer for scaling depth 16 LD16 Print hourly table to FORT.76 [TLATS] 17 LPTAVE Print <T>-<TSUR> at midnight for each layer [TDAY] 18 LD18 Output to fort.78 [TLATS] insolation and atm.rad.coefficents 19 LD19 Output to fort.79 [TLATS] insolation and atm.rad. arrays 20 LONE (Computed) Set TRUE if KRC is in the "one-point" mode followed in 'krccom' by: [real*4] TITLE(20) 80-character title [real*4] DAYTIM(5) 20-character run date and time _____

Latitude(s) (10F7.2) N4 latitudes in degrees, no internal separations. Latitudes to be in order; south to north. [[If last latitude is .LE. 0, will assume symmetric results for global integrations]]

Elevation(s) (10F7.2) N4 values in Km corresponding to latitudes

Orbital Parameters (LPORB=T) Format identical to that produced by PORB program set ASCII file output. So these can be directly pasted with an editor. see PORBCM.INC

PARAMETER CHANGES

Fortran List Directed. Change the values in KRCCOM
White-separated, a "/" terminates the read and leaves remaining values unchanged
The 4 items are: Integer Integer Numeric_value 'Text' / Comment
1: Type (integer) see table below
2: Index in array (integer), as listed in table above
3: New value, numeric, will read as real and convert. 0.=false.
4: Reason, text string within single quotes
[after a / (forward slash) nothing is read, so you can use for comments]

The print file will list each change as read, followed by the title of the changed item. It is a good idea to look at this print to be sure you changed what you intended.

Type Meaning

Valid Index

0 End of Current Changes
1 Real Parameter 1-56
2 Integer Parameter 1-20
3 Logical Parameter 1-20
4 New Latitude Card(s) Follow
5 New Elevation Card(s) Follow
6 New Orbital Parm Cards Follow (LPORB Must be True)
7 Text becomes new Title
8 Text becomes new disk or season-variation file name if index=22, read variable ALBEDO

if index=23, read variable TAUD

9 Complete new set of input follows Text becomes new One-Point input file name 10 This is a set of parameters for "one-point" model 11 For this type, 9 values must appear in a rigid format Set of 2*4 coefficents for T-dep conductivity. List-directed IO 12 To start variable albedo, use input card: 8 22 0 'AlbedoFileName' / Variable albedo text file name Can revert to constant albedo by hokey technique of using a bad name. E.g., 8 22 0 'badName' / turn variable albedo off Files of text table of value versus season will be read at the start of a run. These will apply to ALL latitudes. See example valb1.tab Variable Tau done the same way, with 22 being replaced with 23 COMMON /LATCOM/ see latcom.inc COMMON /DAYCOM/ see daycom.inc Because the binding routines to IDL are intolerant of any errors, the items in the above commons have not been changed, Rather, in 2004July, and additional common was added as a "catch-all" for any new items. COMMON /HATCOM/ see hatcom.inc Error Returns: "Parameter error in TDAY(1)" : Convergence factor < .8 classic. Instability anticipated. "UNSTABLE; Layer.... TDAY(1): DRSET: 0=>Reset by delta_average_T for each layer: else: reset by {linear + DRSET*quadratic}*{<surf>-<botm>} TDAY: LRESET Reset midnight T's for all but top layer. LDAY Last day computations ----- Handy things -----The first "hour" in printout and output arrays is 1/24 (strictly, 1/N24) of a sol after midnight. E.g., the last time is midnight, not the first. Atmospheric scale height, SCALEH, depends upon physical constants and TATMAVE which (2007nov) is always = TATM, input. and GRAV , input ----- DISK BINARY FILES ------The routine TDISK is used to read or write direct-access binary files or bin5 files. The first season to write is specified by JDISK, all following seasons will go to the same file. For direct-access files, each file record consists of KRCCOM plus LATCOM or KRCCOM plus DAYCOM. Disk output is largely controlled by the KRC and TSEAS routines. - - - Items which control file I/O - - - -KOLD & KEEP on first input line KOLD: 0= input card set follows; else=disk record number to start from,

then will read any change cards. If LPORB in old file was True, then there must be a PORB card set as the set of lines following the KEEP,KOLD line KEEP: 0= close disk file after reading seasonal record KOLD; >0= value of JJJJJ at which to start saving seasons in same disk file [overrides JDISK]. To start from a prior seasonal run, need to determine the record corresponding to the desired season; KOLD=J5_target - JDISK(old) ; >0 set KEEP=1, change card J5=number of new seasons, set K40UT.

JDISK sets the first season to save results

N5 sets the last season to run

K40UT sets the record content:

- Will output first record of KRCCOM,ALAT,ELEV, then records of TSF & TPF 0 (normal) Will output records of KRCCOM+LATCOM

+n<=50 Will output records of KRCCOM+DAYCOM for the last computed latitude.

> 50 Will write custom bin5 file at the end of a run, with dimensionality from 3 to 5 (more possible). All 5x outputs allow multiple cases, each with a "prefix" for each case consisting of with 4 size integers (converted to Float) followed by KRCCOM; after this may come vectors of parameters versus season. The next-to-last dimension is increased to allow room for the prefix to be embedded in the bin5 array. KRC input items that would change any of the bin5 dimensions are not allowed to change between cases. Each dimension is adjusted to the necessary size. Each case has the same structure; this simplifies coding although some items are then present redundantly. The number of cases allowed is set by the size of one case, and printed as MASE at the end of the first case in the print output. Cases beyond the maximum that can be stored will be executed, but not saved.

```
The first 4 words of the prefix, and of thus of the bin5 array, are:

(1)=FLOAT(NWKRC) ! Number of words in KRCCOM

(2)=FLOAT(IDX) ! 1-based index of dimension with extra values

(3)=FLOAT(NDX) ! Number of those extra

(4)=FLOAT(NSOUT) ! [Available of other use]
```

51=(N24 hours, 2: TSF TPF, N4 lats, NDX+ seasons, cases)
The prefix section contains: sub_array(seasons,5)(0-based index)
0)=DJU5 1)=SUBS 2)=PZREF 3)=TAUD 4)=SUMF

52=(N24 hours, 7 items, N4 lats, NDX+ seasons, cases)
The 7 items are: 1)=TSF 2)=TPF 3)=TAF 4)=DOWNVIS 5)=DOWNIR
6) packed with [NDJ4,DTM4,TTA4, followed by TIN(2+
7) packed with [FROST4,AFRO4,HEATMM, followed by TAX(2+
The number of layers for TIN and TAX is the smaller of: the number computed
and that fit here.
The prefix is identical to Type 51

54= (seasons, 5 items, NDX +nlat, cases)
 Items are (0-based index):
0= TSF=surface temperature at 1 am, 1= TSF at 13 hours,
2= HEATMM=heat flow, 3= FROST4=frost amount,

4= TTB4 = predicted mean bottom temperature The prefix contains DJU5

55= (seasons,NDX+ items,cases). For seasonal studies at one latitude
ITEMS intended to be recoded as needed. Initial version is 9 items:
 [Tsur@ 1am,3am,1pm, spare, Tplan @1am,1pm, Surface heat flow,
 frost budget, T_bottom]
 The prefix contains DJU5
Can hold very large number of seasons and cases.
THIS MODE DOES NOT SUPPORT CONTINUATION RUNS

56= [vectors&items, latitudes, NDX+ seasons, cases] The first dimension is: TSF for all hours, TPF at all hours, T4 for all layers at midnight, then FROST4, HEATMM, TTA4 The prefix is identical to Type 51

Once a disk file is opened, any records written will go into that file until a new filename is specified (Type 8 Change line), which closes the current file.

To run & save various cases for a single season, set N5 and JDISK to 1.

To extract a detailed day by saving DAYCOM to disk, set JDISK=N5, set a new file name, and set K40UT to desired latitude index (normally 1):

To run continuously with output every K ((1-3) days, set DELJUL=K*PERIOD this will force prediction terms to near 0. setting N3=1 will turn off all prediction. set GGT large (to avoid iteration for convergence) set NRSET=999 (to avoid reset of layers)

To continue run with new parameters (e.g., DELJUL) 3 21 1 'flag set to continue' Note: changing DELJUL will cause reset of DJUL

Must increase the value of N5: 2 5 bigger 'Increase stopping season' Reset will not occur because J5 continues incrementing

ASCII Output Files

krc.prt general; results, what is output is controlled by LP1:6 & LPGLOB

fort.76 tlats.f: mimic Mike Mellon ASCII files if (ld16) then write(76,761)subs,dlat,alb,skrc,taud,pres format(/,' Ls TauD P' 761 LtΑ I 762 format(f7.2,f9.3,f8.3,f9.3) write(76,762)qh,tsfh(i),adgr(j),qs do i=1,n24 j=(i*n2)/n24 qh=i*qhs qs=(1.-alb)*asol(j) ! absorbed insolation write(76,762)qh,tsfh(i),adgr(j),qs enddo

fort.78 tlats.f: for average and maximum: if (ld18) write(78,*)cosi_(i), t_(i), ADGs(i), ADGP(i) if (ld18) write(78,*)j5,j4,sol,ave_a,adgir,c52,beta fort.79 tlats.f: for each time-step if (ld19) write(79,*)adgr(jj),qa,direct,diffuse col 1 = downgoing thermal radiation col 2 = total insolation reaching surface col 3 = direct fraction of insolation col 4 = diffuse fraction of insolation ----- To run two material types (2000jan23) Set IC to the first layer to have the lower material properties (>= 3) Set COND2 to the lower material conductivity Set DENS2 to the lower material density Set SPHT2 to the lower material specific heat If LOCAL is False, then initial setting of all layer thicknesses is based upon the scale of the upper material; if it is set True, the thickness of the lower layers is set by their scale. TDAY no longer allows unstable (thin) layers, and will increase the thickness of the layer IC to satisfy the convergence safety factor FCONV if needed. However, the code to check on convergence was retained. ----- Setting temperature-dependant conductivity

Basic Flag is L10=LKOFT . If this is true, then the 8 input parmeters CONUPO to CONLO3 must be set to yield thermal conductivity as a function of temperature for the upper and lower materials. $k=c0 + c1x + c2x^2 + c3x^3$ where x=(T-200.)*0.01

One way to generate the coefficents is to run for each of the upper and lower materials the IDL procedure koftop, which calls koftfit, which calls spspread; this last mimics the Piqueux relation for un-cemented soils. koftop allows change of its parameters, including grain radius and pressure, and will print the required parameters.

Below are sample coefficients based on Sylvain Piqueux's numerical model for un-cemented soils; the fit error is <0.1% over 120-320K. Left column is grain radius in micrometers, then the four normalized coefficients ready for inclusion in a KRC input file, followed by the thermal inertia at 220K for nominal density and specific heat.

R(mu)	c0	c1	c2	c3	Iner
10.	0.008274	0.000735	-0.000376	0.000148	89.8
20.	0.012379	0.001280	-0.000629	0.000250	109.9
50.	0.021485	0.002647	-0.001201	0.000483	144.7
100.	0.032051	0.004528	-0.001874	0.000761	176.8
200.	0.046023	0.007569	-0.002743	0.001129	211.8
500.	0.068387	0.014075	-0.003874	0.001687	258.2
1000.	0.086303	0.021288	-0.004146	0.002099	290.1
2000.	0.103743	0.030909	-0.003141	0.002535	318.0
5000.	0.127172	0.049907	0.002019	0.003469	352.1
10000.	0.149810	0.074734	0.011546	0.004939	382.2

20000.0.1857060.1199130.0309380.007877425.550000.0.2833610.2502830.0893270.016714525.6

RUNNING THE "ONE-POINT" MODE (2002mar08)

A parameter initialization file Mone.inp is provided. It sets the KRC system into a reasonable mode for one-point calculations. Do not change that file unless you have read this entire file.

A line near the end of that file points to a file 'one.inp' which can contain any number of one-point conditions. 'one.inp' is intended to be edited to contain the cases you want; however, it must maintain the input format of the sample file.

First Line is any title you wish. It must be present. The second line is an alignment guide for the location lines. It must be there.

Each following line must start with an '11 '; this is a code that tells the full-up KRC that is a one-point line. The next 9 fields are read with a fixed format, and each item should be aligned with the last character of the Column title. All items must be present, each line must extend at least to the m in Azim; comments may extend beyond that, but they will not appear in the output file. Be sure to have a <CR> at the end of the last input line.

The fields (after the 11) in the one-point input are: Ls L_sub_S season, in degrees Lat Aerographic latitude in degrees Hour Local time, in 1/24'ths of a Martian Day Elev Surface elevation (relative to a mean surface Geoid), in Km Alb Bolometric Albedo, dimensionless Inerti Thermal Inertia, in SI units Opac Atmospheric dust opacity in the Solar wavelength region Slop_ Regional slope, in degrees from horizontal Azim Azimuth of the down-slope direction, Degrees East of North.

The two additional columns in the output file are: TkSur Surface kinetic temperature TbPla Planetary bolometric brightness temperature

Try running the binary file first. If that fails, a Makefile is provided to complile and link the program; simply enter "make krc" and pray. If this fails, have your local guru look over the Makefile for local dependancies. Suggestions of making the Makefile more universal are welcome.

To run the program, change to the directory where the program was built, and enter "krc". You should get a prompt: ?* Input file name or / for default = Mone.inp If the initialization file still has this name and is in the same directory, enter a single "/" and <CR>. Otherwise, enter the full pathname to the initialization file, with no quotes and no blanks. A second prompt is for the name of the output file: ?* Print file name or / for default = krc.prt Again, if this is satisfactory, simply enter / <CR> , else enter the desired file path-name. ----- Comments on the One-point model. The initialization file of 2002mar08 is set to compute the temperatures at the season requested without seasonal memory. It uses layers that extend to 5 diurnal skin depths. It does not treat the seasonal frost properly, so don't believe the results near the edge of the polar cap. Execution time on a circa 2001 PC may be the order of 0.01 seconds per case. The underlying model is the full version of KRC. By modifying the initialization file, you can compute almost anything you might want. If you choose to try this, best to read all of this document. _____ Reading type 5x files Routines do not access files directly unless specifically listed. DEFINEKRC Define structures in IDL that correspond for Fortran commons Calls: None other than IDL Firm code of common definitions. Must be recoded if a Fortran *.inc changes READKRCCOM Read a KRCCOM structure from a bin5 file uses 3-element HOLD array. Returns a structure of krccom Options to open or close bin5 file or read one case Calls: DEFINEKRC Files: bin5 HOLD is: 0]=logical unit 1]=number of words in a case 2]=# cases in the file MAKEKRCVAL Make string of selected KRC inputs: Key=val Calls: DEFINEKRC KRCHANGE Find changes in KRC input values in common KRCCOM Calls: READKRCCOM MAKEKRCVAL Reads and stores krccom for first case. For each additional case, makes a list of any changes in the flaot, integer or logical input values. KRCCOMLAB Print KRC common input items all items via arguments Calls: None KRCLAYER Compute center depth of KRC layers all items via arguments Calls: none KRCCOMLAB Print KRC common input items all items via arguments Calls: None KRCSIZES Compute array and common sizes for KRC Fortran

Test procedure to compute array sizes or hours. Must recode if any size in *.inc changes

_____ A listing of all commons can be generated by these Linux commands: cd /home/hkieffer/krc/src [replace top part of path with local installation] rm allinc.txt cat krccom.inc latcom.inc daycom.inc hatcom.inc filcom.inc units.inc porbcm.inc > allinc.txt _____ IDL routines 2009may10 A number of IDL routines have been written to interface with the KRC system. The following are KRC-specific: definekrc # Define structures in IDL that correspond for Fortran commons. Calls BYTEPAD delcase # Show delta between arrays changing only last index. Calls HISTFAST lookrc # Read any type 5x KRC bin5 models; look at change between cases. Calls READKRC5* krccomlab # Print KRC common input items. Calls 0 krchange # Find changes in KRC input values in common KRCCOM. Calls READKRCCOM MAKEKRCVAL krclayer # Compute center depth of KRC layers. Calls 0 makekrcval # Make string of selected KRC inputs: Key=val. Calls DELASTO readkrc52 # Read RKC type 52 or 51 bin5 file; post 2004jul21. Calls BIN5 readkrc54 # Read KRC type 54 or 55 bin5 file. Calls BIN5 readkrc56 # Read KRC type 56 bin5 file. Calls BIN5 readkrccom # Read a KRCCOM structure from a bin5 file. Calls DEFINEKRC tstp2ta # Convert T_surf and T_plan to T_atm. Calls 0 when2start # Calc starting date for KRC to reach Ls on specific season step. Calls 0 The following are utility routines called directly or indirectly by the KRC routines: bin5.pro # Write/Read numeric binary files with 'standard' header. Calls 0 bytepad # Create a Byte version of a string, padded with trailing blanks. Calls 0 # Strip-chart plot of several variables. Calls PSYMLINE chart color24bit # Generate 256 longwords to emulate nice 8-bit color table. Calls 0 delast0 # Delete trailing 0's past the decimal point. Calls 0 # Modify single numeric value; with prompt and limit tests. Calls 0 getp getpan # Modify any elements of numeric array, with prompt and limit tests. Calls 0 getpsn # Interactive input any elements of a string array, with prompt. Calls 0 graph # Interface to graphics devices. Calls SETCOLOR histfast # Robust, easy histogram plot, with statistics, opt row weights. Calls MEAN_STD SUBTITLE # Common minimal functionality in the kon case statement. kon91 Calls GETPINTS GRAPH MAKE99 SETCOLOR TV2JPG TV2LP label_curve # Place an oriented label on a curve . Calls RNDEX RTERP1 locate # Find lower index of interval in ordered vector containing x. Calls 0 # Convert Martian season L_s <-> Julian day. Calls 0 tes make99 # Make/print list of user options for a program. Calls 0

mean_std # Mean and standard deviation of a vector. Calls 0 psymline # Hughs convention for transfering PSYM and LINESTYLE in one. Calls 0 # Finds floating-point index of within a monotonic array. Calls LOCATE rndex rterp1 # real interpolation in a vector. Calls 0 setcolor # Set or modify colors, lines, plot-symbols, #plots/page. Calls COLOR24BIT GETP GETPAN TOOTHB STO # Make minimal string for numbers, or string arrays. Calls DELASTO st0 strword1 # Extract first word from a string or strarr. Calls 0 toothb # Add a toothed color scale-bar to a window or TVPLEX panel. Calls GETPAN The IDL program lookrc contains code to read all type 5x files and compare multiple cases. Although there is a lot of speciality code, all functions are isolated in elements of a large case statement. One could extract parts of the code to start your own routines. .rnew lookrc @ 11, edit file path; the default extension will be appended for each type @ 5x, where x is 1,2,4,5,6 to read the file @ 40, will list a guide to what was read Notes on how some aspects of the code work: >> New file name: TCARD reads a card of Type 8, (and index is not 22 or 23) it calls TDISK(4,0), which closes current file and sets LOPN2=.FALSE. TCARD then moves new file name into common KRC checks if current (new) values of N5 and JDISK call for file output; with LOPN2=.FALSE., KRC calls CALL TDISK (1,0) to open new file. >> End of a case and end of a run: TCARD sets KOUNT=0 at entry; this is incremented for every card except those of type 0 (or less) or type 11 (one-point mode). When type 0 is encountered, if KOUNT is positive, does normal check of changes before return with IR=1 to indicate start of a new case; if KOUNT is zero, returns with IR=5 and prints 'END OF DATA ON INPUT UNIT' >> Setting one-point mode. This can be done only in the first case, and there is no way to leave the one-point mode except to end the run. TCARD encounters: " 10 * filename" as change card in the initial case. sets this as new input file name, then returns with IRET=4 [Thus, nothing following this change card in initial file is read] KRC closes prior input file, opens the new one, and reads past first two lines then calls TCARD to read first one-point line and sets LONE=true and drops into the top of the "case" loop. The master one-point should have a single latitude, no binary output file. The small number of layers, days to converge, and seasons ignores the seasonal effect. One-point request values are read by TCARD @ 310, which computes starting DJUL

>> Starting conditions and date

Initial N5-JDISK sets the size of output files. There could be any number of interior seasons where parameter changes are made; based on successive values of IDOWN.

KRC initially calls TCARD(1
For each case loop, sets IQ=TCARD_return. If one-point mode, sets IQ=1

TSEAS uses IQ as key. It this is 1, then sets J5=0 and sets DJU5 to season -1. else, increments J5 and increments DJU5 with current DELDUL. This allows use of variable resolution dates. (so J5 never 0 when TCARD(2 called) If J5 equals IDISK2, then TSEAS calls TCARD(2 to read changes, and proceeds to next season.

TLATS uses J5 as the key; if it is <= 1, then starts from equilibrium conditions, else uses predictions from prior season

The default is that change cards cause a fresh calculation of starting conditions. Exceptions are when J5=IDOWN>0 at TCARD entry

>> Use of common PORBCM

Contents are described in porbcm.inc,

PORBCM is filled by TCARD calling PORBO, which reads the first 60 items in 5G15.7 from the input file and sets the value of PI. KRC references porbcm.inc but does not use it. TSEAS uses a few items to calculate LsubS. TYEAR uses the value for length of year.

4 Evolution log of KRC

This log of modifications may not be complete.

evolve.txt Notes on evolution of KRC code, after the first 15 years.

85May[~]10-14. Dave Paige visits Flagstaff. We create new directory [hkieffer.krc.mars] in which MARS version of code is put. MARS version has larger LATCOM (JLAT changed to real*4). HELPLIST revised.

After Dave left, found that TDISK had not had JLAT change, hence was not writing LATCOM to disk. Made new plot version, starting with 84jun comet version, but with almost entire revision using NCAR_1 routines, including new MCURVE1, CONREC1 and GO1. Never got all the bugs out.

85Jun24-28 Paul Weissman visit. Found error in COMA2, otherwise no changes from Jun 84 comet version. Linked and ran and duplicated older runs.

85sep05-07 Combine the comet and mars versions into single routines which use the larger LATCOM. Only external change is reversing the meaning of LD18. Major restructuring of TLATS and TDAY to accommodate both comet and Mars; use LD20 .TRUE. if Mars, .FALSE. if comet. Other routines needed no changes. Revise HELPLIST. Create directory KRC.COM] for the comet-particular stuff. Move older routines for .KRC] to .KRC.COM]. Move all the routines which support both comet and mars from .KRC.MARS] to .KRC]. Delete plot routines dating from 1984 which used the smaller LATCOM.

85oct14 Add COMMON FILCOM of file names; print these in TPRINT. Change meaning of FROST4 and AFRO4 for comet. Minor changes in printout sequence. Change TYPE to WRITE(IOPM in TDISK.

86oct Paul finds erroneous factor of PI in computing coma diffuse radiance; change made to source code only, not linked.

87mar29 Remove incorporation of albedo in the solar incident flux ASOL. Add ADGDIF (diffuse solar flux) to KRCCOM.INC. Recompile TLATS,TDAY, Link.

87jun30 TDAY: Avoid /0 if DTMJ(JJJ)=0 at "done" test.

87sep11 .MARS] TDAY & TLATS: Special versions for metamorphism. Use ZLAT(17:19) for input of metamorphism and sublimation constants. Use TT(J,MAXN3) to transfer metamorphism rate. TYEAR: version of TLATS which averages daily insolation and includes PORB in the insolation calculation. Uses AVEDAY.

87oct01 ALL Separate the use of NMHA for storage and N24 for printout. TLATS: replace CFSOLAR with AVEDAY.

87nov22 .YEAR] versions of DAYCOM and LATCOM with larger MAXN24 and MAXN2 meant for use with TYEAR. Most routines compiled into .YEAR] with the these. Will need to redo TDISK if it is to be used.

87nov22 TCARD: Add report if input integers are reset into valid range. NMHA no longer constrained. TPRINT: redo some formats. TDAY: Add error report if convergence is unstable. KRC: set IOERR=IOPM rather than IOSP. Force parameter print through call to TPRINT(2) if TDAY(1) error occurs.

.MARS]TLATS: now includes variance tests.

88sep08 .MARS]TDAY: Test moving layer T limit tests and metamorph from N24 into each time loop; so that they are done 1536 instead of 40 times per "day". Negligible effect; <.01 degree in TMETA.

97fall-98summer Incorporate one-layer atmosphere with many parameters that can be tuned to mimic Haberle-Jakosky model. Wrote LaTeX description. Build TES look-up code for computation of thermal inertia from TES observations; this interfaces with Mike Mellon model set.

1997sep idlkrc.f Build this IDL interface to call KRC.

98sep01-07 Add section to TDISK for output of bin5 files type 51 and 52. Minor code cleanup, avoiding divide-by-zero if atmosphere parameters were zero Make KRC/moon version of TLATS and TDAY by removing all atmosphere code, and including eclipse section in TLATS; commons left the same even though atmosphere results not calculated.

1999dec krc.f tcard.f Add option to continue from current condition

2002mar07 alsubs.f Created. Adopted from l_sub_s.pro

2002mar07 krc.f tcard.f Major change. Add option for "one-point" rapid runs for Surface T $\,$

2002jul Major change. Incorporate Delta-Eddington atmosphere. Found that double precision required within deding2.f

2002aug04 tdisk.f Add output file type 53=(combo at 1 lat, 2+80 seasons, 10 cases). Recode logic

2002nov01 tseas.f Have DJU5 increment by current DELJUL for each season

2004jul06 tdisk Add file style 54 Add the Common HATCOM

2004sep28 porb.f Change name of called routine ROTATE to ROTVEC to avoid library conflicts

 $2004 {\tt sep28}$ tlats.f Add tests to avoid round-off to negative fluxes at night so code would run at ASU

2004sep30-Oct5 tday.f tdisk.f Add storage of surface downward fluxes every hour on last day. Revise file style 52 to include them (and a spare variable).

2005nov18 tlats Add optional solar zenith angle limit

2005nov19 tprint Add print of depth to top of 2nd layer

2005dec28 tlats Fix bug using ZENLIM. Additional comments

2006jan25 tlats Modify SKYFAC from linear with slope to (1+cos s)/2

2006apr12 tdisk Change file style 54 to have both 1am and 1pm surface Temp.

2006apr22 tdisk Allow flexible number of cases for output file type 52 and 54

2006apr30 tdisk Add TTB4 to type 54 output

2006sep09 tcard Correct error: REAL*4 LSUBS should have been ALSUBS

2006sep09 Allow seasonally variable albedo and TauD. three new routines: seasalb, seastau, readtxt360; and changes in tseas and tcard and filcom.inc

2008oct02-25

Found error in calculation of planetary temperature; was using hemispheric integral 1-BETA instead of exp(-Tau_IR); so in effect using tau that was too large by factor of tau_eff/ Tau_IR. Modify: krc.f tseas.f tlats.f tday.f tdisk.f tprint.f tcard.f krccom.inc daycom.inc Use slope azimuth as a flag for a pit of slope SLOPE. Put in proper SKYFAC for conical pit. Allow for Snow formation in cold atmosphere and fall to surface. Move MAXBOT from daycom.inc to krccom.inc. Replace ID22(1) and (2) with KVALB and KVTAU. Move AMW fixed value in tlats.f into krccom in place of ABRAMP move other physical and hardware-dependent constants into krc and krccom. Add output file type 56 in tdisk. Replace dual use of GGT by using new DTMAX for daily convergence. Major modification of output Type 52. Use IDOWN as season index at which to read some changes TMN4Y(

2008nov11-2009feb Add temperature-dependant conduction option Use L10 as logical variable for k-of-T Lengthen KRCCOM and move some inputs around recode tday to have constant and T-dependant options Update IDL routines that deal with KRCCOM Remove max # seasons.

2009apr22 Begin ability to forecast deep layers based on storage of midnight values.

Scheme 1. [Coded, but not refined. Mostly a stub] Store at integral years prior to forecast season index. If have 3 or more values, use EPREAD; should be safe to use on all layers. Because of possible jump perturbation on the first day, best to not have that be one of the stored dates. Does nothing if IDISK2=0. [To remove, delete TMN4Y from hatcom, delete call to TYEARP in TSEAS, remove tyearp.o from sources in Makefile]

Scheme 2. [Not implimented] Rolling storage of all seasons for the past year. At forecast season; evaluate thermal delay to surface and make [complicated] forecast.

2010jan11 Go to IMPLICIT NONE in all major routines Change names in krccom PI>>PIVAL RAD>>RADC to improve search uniquess Move TINT call from tlats to tseas so as to remove 1-season delay in SUMF Add D-line writes to fortran units for study of KofT differences.

Input: testKofT.tex

5 Testing temperature dependant conductivity

2010jan

Comparison cases were run using 3 years and 19 latitudes. Non-linear terms in k(T) were set to zero, and inertia of upper layers and conductivity of lower layers were set to give exactly the linear conductivity value, so that the specifications of the two cases were effectively identical. The pressure was set to follow the Viking curve, so that the polar frosts would not affect the temperate latitudes.

Two cases run with type 52 output; first LkofT False, then True. When slightly different results were found, 4 cases were run; with LkofT False, True, False, True. No differences were found between results for the same input LkofT, indicating that the True - False difference were not due to erroneous resetting of memory, such as might be caused by indices outside defined range, apart from possibly in arrays specific to the True case.

For each of the 5 arrays stored in Type 52 files, statistics were run on the difference of the two cases, True minus False. The same process was run on each of the 5 arrays in type 52 files. Routine DELCASE first gets statistics on the entire array, with two passes, the second excluding values outside 4σ of the first. In addition, statistics were run for each of the items in an array.

Type 52 arrays are:

Array tt has: Tsurf Tplan Tath DownVIS DownIR Dimensions 24 5 19 40 4 Contain: hour item lat seas case Array uuu has: alat elev Dimensions 19 2 4 Contain: lat item case Array vvv has: DJUS SUBS PZREF TAUD SUMF Dimensions 19 2 19 40 4 Contain: law item lat seas case Array gg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mea sigma min max ttt pass1= -0.00045251 0.002532 0.16205 0.0025345 0.006107 past1= -0.00037810 0.006577	Arrav tt	t has:	T٤	surf '	Tolan	Tatm	DownVIS	DowmIR			
Array uuu has: alat elev Dimensions 19 2 4 Contain: lat item case Array vvv has: DJUS SUES PZREF TAUD SUMF Dimensions 40 5 4 Contain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: lay item lat seas case ase ase Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 contain: item lat seas case Results for True - False cases min max max ttt pass1= -0.0004329 0.0064557 -0.46111 0.48940 pass1 pass1 0.0002807 -0.02215 0.025345 Tsurf -0.000287 -0.00215 0.025345 contain usu usu pass1 0.0000 0.0000 0.0000 0.0000 0	-				-						
Dimensions 19 2 4 Contain: lat item case Array vvv has: DJU5 SUBS PZREF TAUD SUMF Dimensions 40 5 4 Contain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: item lat seas case AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max ttt pass2 = -0.0048231 0.0035892 -0.46111 0.48940 passit no.000032801 0.0065075 -0.052032 0.16205 DownIR -0.00032801 0.0065075 -0.052032 0.16205 DownO passit 0.0001806 -0.0019086 -0.01777 0.093485 uuu pass1 = -0											
Dimensions 19 2 4 Contain: lat item case Array vvv has: DJU5 SUBS PZREF TAUD SUMF Dimensions 40 5 4 Contain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: item lat seas case AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max ttt pass2 = -0.0048231 0.0035892 -0.46111 0.48940 passit no.000032801 0.0065075 -0.052032 0.16205 DownIR -0.00032801 0.0065075 -0.052032 0.16205 DownO passit 0.0001806 -0.0019086 -0.01777 0.093485 uuu pass1 = -0											
Contain: lat item case Array vvv has: DJUS SUBS PZREF TAUD SUMF Dimensions 40 5 4 Sums SUMF Contain: seas item Case SUMF SUMF Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: lay item lat seas case AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max max tt pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2 case pass2 0.0004597 -0.026215 0.025345 Tsurf -0.00032801 0.0065075 -0.052032 0.16205 pass2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <	Array u	uu has:		alat	elev						
Array vvv has: DJUS SUBS PZREF TAUD SUMF Dimensions 40 5 4 Sum Cantain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: lay item lat seas case AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False case min max max min nax fti pass1 = 0.00004529 0.0064557 -0.46111 0.48940 pass/2005 pass/200267 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/2002577 pass/2002577 pass/200000 pass/2002577 pass/											
Array vvv has: DJUS SUBS PZREF TAUD SUMF Dimensions 40 5 4 Sum Cantain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: lay item lat seas case AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False case min max max min nax fti pass1 = 0.00004529 0.0064557 -0.46111 0.48940 pass/2005 pass/200267 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/200257 pass/2002577 pass/2002577 pass/200000 pass/2002577 pass/	Cont	ain:	lat	item	case						
Dimensions 40 5 4 Contain: seas item case Array ddd has: Tmin Tmax Dimensions 19 2 19 40 4 Contain: lay item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max ttt pass1 = -0.00043529 0.0064557 -0.46111 0.48940 pass17 Tol.0032801 0.0056075 -0.05232 0.16205 DownIR -0.0003881 0.00056075 -0.05232 0.16205 DownIR 0.00018810 0.0002397 DownIR -0.00032861 0.00206 0.0000 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 0.0000 0											
Contain: seas item case Array ddd has: Tmin Tmax aso aso Dimensions 19 2 19 40 4 Contain: lay item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FR0ST4 AFR04 HEATMM Dimensions 6 19 40 4 4 Contain: item lat seas case Results for True - False cases main max max max tem pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00043520 0.006575 -0.052032 0.102505 DownIR 0.0001806 -0.001951 0.0082397 DownIR -0.0001810 0.0034732 -0.017777 0.093485 uuu pass1= 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	Array v	vv has:		DJU5	SUBS	PZREF	TAUD	SUMF			
Array ddd has: Tmin Tmax lay Tmax item Tmax lat Seas Case Array ggg has: NDJ DTM4 TTA4 FR0ST4 AFR04 HEATMM Dimensions 6 19 40 4 4 Contain: item lat seas case Results for True - False cases Mean min max min max tt pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2 -0.00048231 0.0032892 -0.026215 0.025345 Tsurf -0.00075997 0.0082757 -0.39853 0.40007 Tatm -0.00075997 0.0082757 -0.052032 0.16205 0.0023897 0.0082397 DownIR 0.0001810 0.0034732 -0.017777 0.093485 uuu uuu max min max	Dimens	ions	40	5	4						
Dimensions 19 2 19 40 4 Contain: lay item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max nin nax ttt pass1= -0.00043529 0.0064557 -0.46111 0.48940 npass2= -0.0000867 0.0092087 -0.026215 0.025345 Tsurf -0.0000867 0.0092087 -0.05933 0.40007 1.6205 DownOS345 Dowe0867 0.0019531 0.002237 Dowe1620 Dowe178 2.08969 Dowe178 0.00234732 -0.017777 0.093485 uuu uu Duo00 0.0000	Cont	ain:	seas	item	case						
Dimensions 19 2 19 40 4 Contain: lay item lat seas case Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max nin nax ttt pass1= -0.00043529 0.0064557 -0.46111 0.48940 npass2= -0.0000867 0.0092087 -0.026215 0.025345 Tsurf -0.0000867 0.0092087 -0.05933 0.40007 1.6205 DownOS345 Dowe0867 0.0019531 0.002237 Dowe1620 Dowe178 2.08969 Dowe178 0.00234732 -0.017777 0.093485 uuu uu Duo00 0.0000											
Contain: lay item lat seas case Array gg has: NDJ DTM4 TTA4 FROST4 AFR04 HEATMM Dimensions 6 19 40 4 4 AFR04 HEATMM Contain: item lat seas case AFR04 HEATMM Results for True - False cases Mean sigma min max Max tt 9ass1= -0.00043529 0.0064557 -0.46111 0.48940 AFR04 HEATMM pass2= -0.00075997 0.0032757 -0.052032 0.16205 DownTR -0.0001801 0.0065075 -0.052032 0.16205 DownTR -0.0001801 0.0000	Array de	dd has:		Tmin	Tmax						
Array ggg has: NDJ4 DTM4 TTA4 FROST4 AFRO4 HEATMM Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max ttt 0.00043529 0.0064557 -0.46111 0.48940 pass1= -0.0000867 0.0092087 -0.46111 0.48940 Tplan -0.00032801 0.0065075 -0.39853 0.40007 Tatm -0.00032801 0.0065075 -0.052032 0.16205 DownIVS 8.2989e-06 0.0019086 -0.0019511 0.0082397 DownIVS 8.2989e-06 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 yzgs1= -0.032266 0.12384 -0.54330 0.15485 pass1= 0.0302711 0.11871 -0.5653 0.15485 pJU5 0.0000 0.0000 0.0000 <td>Dimens</td> <td>ions</td> <td>19</td> <td>2</td> <td>19</td> <td>40</td> <td>4</td> <td></td> <td></td>	Dimens	ions	19	2	19	40	4				
Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max tt 9ass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00048231 0.0032892 -0.026215 0.025345 Tsurf -0.00075997 0.0082757 -0.38853 0.40007 Tatm -0.00018810 0.0034732 -0.017777 0.0932837 DownIX 8.2989e-06 0.0019086 -0.019531 0.0082397 DownIX 8.2989e-06 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 subs 0.032836 0.12384 -0.54330 0.15485 pass1= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000	Cont	ain:	lay	item	lat	seas	case				
Dimensions 6 19 40 4 Contain: item lat seas case Results for True - False cases Mean sigma min max tt 9ass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00043231 0.0032892 -0.026215 0.025345 Tsurf -0.00075997 0.0082757 -0.33853 0.40007 Tatm -0.00018810 0.0034732 -0.017777 0.093485 uuu 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 subs 0.0000 0.0000 0.0000 0.0000 subs 0.032836 0.12384 -0.54330 0.15485 pass1= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.											
Contain: itm lat seas case Mean sigma min max ttt pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00048211 0.0035892 -0.026215 0.025345 Tsurf -0.00090867 0.0082757 -0.39853 0.40007 Tatm -0.00032801 0.0082757 -0.39853 0.40007 Tatm -0.00032801 0.0082757 -0.0392831 0.0082397 DownVIS 8.2989e-06 0.0019086 -0.01777 0.093485 uuu uu uu uu uu uu pass1= 0.0000 0.0000 0.0000 0.0000 uuu uu uuu <							FROST4	AFRO4	HEATMM		
Mean sigma min max tit pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass1= -0.00075997 0.0082757 -0.026215 0.002535 Taum -0.00075997 0.0082757 -0.052032 0.16205 DownIR -0.00018810 0.0002597 0.0082757 -0.032380 DownIR -0.00018810 0.0002717 0.01777 0.0082397 DownIR -0.00018810 0.00021871 0.01777 0.0082397 DownIR -0.00018810 0.0002181 pass1= 0.0000 0.0000 0.0000 pass1= -0.0322836 0.12384 -0.54330 0.15485 DJUS <td <="" colspan="2" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
Meansigmaminmaxtttpass1=-0.000435290.0064557-0.0262150.025345Turt-0.000908670.0092087-0.0461110.48940Tplan-0.000759970.0082757-0.398530.40007Tatm-0.000328010.0065075-0.0520320.16205DowNIS8.2989e-060.00019086-0.0197310.0082397DowNIS-0.00188100.0034732-0.0177770.093485uuupass1=0.00000.00000.00000.0000alat0.00000.00000.00000.0000alat0.0002110.112341-0.556530.15485pass2=-0.0302710.11371-0.506530.15485pass2=-0.0302710.11871-0.506530.15485JJU50.00000.00000.00000.0000SUMF0.00000.00000.00000.0000SUMF0.0040610.082164-0.543300.15485dddpass1=-0.0040610.082164-0.543300.169478pass2=-0.0040610.082164-0.340640.33194min-0.00406510.082164-0.340640.33194min-0.00406510.069489-0.340640.61833max-0.00406510.069254-0.680541.9007pass1=-0.00810470.16092-2.99781.9007	Cont	ain:	item	Lat	seas	case					
Meansigmaminmaxtttpass1=-0.000432310.0064557-0.0262150.025345Turti-0.000908670.0035892-0.0262150.025345Turti-0.000908670.0092087-0.0461110.489400Tplan-0.000759970.0082757-0.398530.40007Tatm-0.000328010.0065075-0.0520320.16205DowIVIS8.2989e-060.00019086-0.0177770.093485UUU-0.00188100.00000.00000.0000alat0.00000.00000.00000.0000alat0.0032710.112341-0.565330.15485pass1=-0.0302710.112871-0.565530.15485pass2=-0.0302710.11871-0.506530.15485pass1=-0.00000.00000.00000.0000SUMS0.00000.00000.00000.0000SUMS0.00000.00000.00000.0000SUMF-0.00406610.084181-0.736310.69478pass2=-0.00406610.082764-0.680540.61833dddgss1=-0.00406610.082764-0.680540.61833max-0.00406610.082764-0.680540.61833max-0.00406610.082764-0.680540.61833max-0.00406610.082764-0.680540.61833max-0.00406610.082764-0.680540.61		Т	E.L.								
ttt pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00048231 0.0035892 -0.026215 0.025345 Tsurf -0.00090867 0.0092087 -0.46111 0.48940 Tplan -0.00075997 0.0082757 -0.39653 0.40007 Tatm -0.00032801 0.0065075 -0.052032 0.16205 DownIX 8.2989e-06 0.00019086 -0.0019531 0.0082397 DownIR -0.00018810 0.0034732 -0.017777 0.093485 uuu pass1= 0.0000 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 0.0000 vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd pass1= -0.0040661 0.084181 -0.73631 0.69478 pass2= -0.0040641 0.082764 -0.68054 0.61833 Tmax -0.0040641 0.082764 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383	Results 10					min	mov				
pass1= -0.00043529 0.0064557 -0.46111 0.48940 pass2= -0.00048231 0.0035892 -0.026215 0.025345 Tsurf -0.00090867 0.092087 -0.46111 0.48940 Tplan -0.00075997 0.0082757 -0.39853 0.40007 Tatm -0.00032801 0.0065075 -0.052032 0.16205 DownIR -0.00018810 0.0034732 -0.017777 0.093485 uuu -0.0001086 -0.0019531 0.0082397 DownIR -0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 gass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.5653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000	+++	heal	ш	SIgma		111 111	liidx				
$\begin{array}{llllllllllllllllllllllllllllllllllll$		-0 0004	3520	0 00645	57 _0	16111	0 18910				
Tsurf -0.00090867 0.0092087 -0.46111 0.48940 Tplan -0.00075997 0.0082757 -0.39853 0.40007 Tatm -0.00032801 0.0065075 -0.052032 0.16205 DownIX 8.2989e-06 0.00019086 -0.0019531 0.0082397 DownIR -0.00018810 0.0034732 -0.017777 0.093485 uuu pass1= 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 vvv pass1= -0.030271 0.11871 -0.50653 0.15485 puts 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 <											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	passz-		0231	0.00000	92	020213	0.020040				
Tatm -0.00032801 0.0065075 -0.052032 0.16205 DownVIS 8.2989e-06 0.00019866 -0.0019531 0.0082397 DownIR -0.00018810 0.0034732 -0.017777 0.093485 uuu -0.0000 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 0.0000 vvv -0.032836 0.12384 -0.54330 0.15485 pass1= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd -0.0040661 0.084181 -0.73631 0.69478 pass1= -0.0040681 <td>Tolon</td> <td></td> <td>5007</td> <td>0.00920</td> <td>57 –0</td> <td>30853</td> <td>0.40940</td> <td></td> <td></td>	Tolon		5007	0.00920	57 –0	30853	0.40940				
DownVIS 8.2989e-06 0.00019086 -0.0019531 0.0082397 DownIR -0.00018810 0.0034732 -0.017777 0.093485 uuu pass1= 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd -0.16418 0.23695 -0.54330 0.15485 gass1= -0.0040661 0.084181 -0.73631 0.69478 pass2= -0.0040661 0.082764 -0.68054 0.61833 Tmax -0.0040681 <td< td=""><td>Ipian Tatm</td><td>-0.0007</td><td>2801</td><td>0.00650</td><td>75 –0</td><td>052032</td><td>0.40007</td><td></td><td></td></td<>	Ipian Tatm	-0.0007	2801	0.00650	75 –0	052032	0.40007				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
uuu pass1= 0.0000 0.0000 0.0000 alat 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 PZREF 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd -0.004061 0.082164 0.3194 pass1= -0.0040661 0.084181 -0.73631 0.69478 pass2= -0.00404641 0.08578 -0.73631 0.69478 gsg											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.0001	0010	0.00347	02 0.	011111	0.000400				
alat 0.0000 0.0000 0.0000 elev 0.0000 0.0000 0.0000 vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 PZREF 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd		0 0	0000	0 00	00	0 0000	0 0000				
elev 0.0000 0.0000 0.0000 0.0000 vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 PZREF 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd											
vvv pass1= -0.032836 0.12384 -0.54330 0.15485 pass2= -0.030271 0.11871 -0.50653 0.15485 DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 PZREF 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd - - - - - pass1= -0.0040661 0.084181 -0.73631 0.69478 - pass2= -0.0040661 0.082764 -0.68054 0.61833 - Tmin -0.0040681 0.082764 -0.68054 0.61833 - ggg - - - - 0.69478 - pass1= -0.00024668 0.044051 -0.648054 0.61833 - mbJ4											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1		0.00		0.0000	0.0000				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-0.03	2836	0.123	84 -0	.54330	0.15485				
DJU5 0.0000 0.0000 0.0000 0.0000 SUBS 0.0000 0.0000 0.0000 0.0000 PZREF 0.0000 0.0000 0.0000 0.0000 TAUD 0.0000 0.0000 0.0000 0.0000 SUMF -0.16418 0.23695 -0.54330 0.15485 ddd -0.0040661 0.084181 -0.73631 0.69478 pass1= -0.0040661 0.082764 -0.68054 0.61833 Tmin -0.0040641 0.085578 -0.73631 0.69478 ggg ggg - - - - pass1= -0.0040641 0.085578 -0.73631 0.69478 ggg - - - - - - pass1= -0.0081047 0.16092 -2.9978 1.9007 - pass2= -0.00024668 0.044051 -0.64148 0.53574 - NDJ4 0.0052632 0.088755 -1.0000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
SUBS0.00000.00000.00000.0000PZREF0.00000.00000.00000.0000TAUD0.00000.00000.00000.0000SUMF-0.164180.23695-0.543300.15485ddd </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-										
PZREF0.00000.00000.00000.0000TAUD0.00000.00000.00000.0000SUMF-0.164180.23695-0.543300.15485ddd </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
TAUD0.00000.00000.00000.0000SUMF-0.164180.23695-0.543300.15485ddd </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
SUMF -0.16418 0.23695 -0.54330 0.15485 ddd pass1= -0.0040661 0.084181 -0.73631 0.69478 pass2= -0.0043492 0.069489 -0.34064 0.33194 Tmin -0.0040681 0.082764 -0.68054 0.61833 Tmax -0.0040641 0.085578 -0.73631 0.69478 ggg ggg -0.0040641 0.085578 -0.73631 0.69478 nax -0.0040641 0.082764 -0.68054 0.61833 max -0.0040641 0.085578 -0.73631 0.69478 gggg											
ddd pass1= -0.0040661 0.084181 -0.73631 0.69478 pass2= -0.0043492 0.069489 -0.34064 0.33194 Tmin -0.0040681 0.082764 -0.68054 0.61833 Tmax -0.0040641 0.085578 -0.73631 0.69478 ggg ggg -0.0081047 0.16092 -2.9978 1.9007 pass2= -0.00024668 0.044051 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383											
pass2= -0.0043492 0.069489 -0.34064 0.33194 Tmin -0.0040681 0.082764 -0.68054 0.61833 Tmax -0.0040641 0.085578 -0.73631 0.69478 ggg -0.0081047 0.16092 -2.9978 1.9007 pass2= -0.00024668 0.044051 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383											
pass2= -0.0043492 0.069489 -0.34064 0.33194 Tmin -0.0040681 0.082764 -0.68054 0.61833 Tmax -0.0040641 0.085578 -0.73631 0.69478 ggg -0.0081047 0.16092 -2.9978 1.9007 pass2= -0.00024668 0.044051 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383	pass1=	-0.004	0661	0.0841	81 -0	.73631	0.69478				
Tmin-0.00406810.082764-0.680540.61833Tmax-0.00406410.085578-0.736310.69478gggpass1=-0.00810470.16092-2.99781.9007pass2=-0.000246680.044051-0.641480.53574NDJ40.00526320.088755-1.00001.0000DTM4-0.000189500.0020181-0.0148410.013175TTA4-0.000425420.0040637-0.0417330.052383	pass2=	-0.004	3492	0.0694	89 -0	.34064	0.33194				
Tmax-0.00406410.085578-0.736310.69478gggpass1=-0.00810470.16092-2.99781.9007pass2=-0.000246680.044051-0.641480.53574NDJ40.00526320.088755-1.00001.0000DTM4-0.000189500.0020181-0.0148410.013175TTA4-0.000425420.0040637-0.0417330.052383	-										
ggg pass1= -0.0081047 0.16092 -2.9978 1.9007 pass2= -0.00024668 0.044051 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383	Tmax					.73631					
pass2= -0.00024668 0.044051 -0.64148 0.53574 NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383	ggg										
NDJ4 0.0052632 0.088755 -1.0000 1.0000 DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383		-0.008	1047	0.160	92 -	2.9978	1.9007				
DTM4 -0.00018950 0.0020181 -0.014841 0.013175 TTA4 -0.00042542 0.0040637 -0.041733 0.052383	pass2=	-0.0002	4668	0.0440	51 -0	.64148	0.53574				
TTA4 -0.00042542 0.0040637 -0.041733 0.052383	NDJ4	0.005	2632	0.0887	55 -	1.0000	1.0000				
	DTM4	-0.0001	8950	0.00201	81 -0.	014841	0.013175				
FROST4 -0.052804 0.38045 -2.9978 1.9007	TTA4	-0.0004	2542	0.00406	37 -0.	041733	0.052383				
	FROST4	-0.05	2804	0.380	45 -	2.9978	1.9007				

AFRO4	0.0000	0.0000	0.0000	0.0000
HEATMM	-0.00047228	0.021726	-0.14533	0.12671

The small change in DownVIS (0.008 of max value is 673) was unexpected, it was found to be caused by the small change in scale height caused by a difference in the atmospheric temperature. This was confirmed by setting the elevation to 0, which resulted in no change of DownVIS.

To examine the problem more closely, a statement was added to TLATS which wrote out a number of variables for each latitude, season and case. It was found that the largest differences occured in the season following that in which the number of convergence days, NDJ4, were different.

There are two tests in tday that can trigger setting the last convergence day, both based on DTM, the RMS day-today change in layer temperatures at midnight. The one for DTM being nearly constant (fractional change less than DDT=0.002 seems never to be used (min value was .07); the last day is set when DTM is less than DTMAX=0.1; TDAY also requires that the DTM computed for the last day is smaller than the trigger day.

The average DTM for Tcon was .0861548, that for KofT 0.0861049

There were 14 times when the number of convergence days differed, out of 2280

The average number of days for False/True were 7.00219,7.00658

••

-

Added temporary code in TDAY to write out FAC7 and layer ΔT 's, initially every time but that made huge files, so only at times when calculations went all the way to the bottom layer, which is every 2 hours. Still generates 18366 lines for one latitude.

Wrote KRC43 to look at ΔT in time loop. till generates 18366 lines for one latitude. After finding the part of the run for which the number of convergence days were the same, thus being straight-forward to compare, compute statistics for each saved item for value and change between cases. These are shown in table below, along with the change normalized to the Mean Absolute value for each item.

The bottom layers for time doubling (printed in krc.prt) are: 4 6 8 10 12 20. Hence, the ΔT and its change would be expected to increase below each of these steps.

••

... .

Mean	StdDev	Minimum	Maximum
6.30496264	0.00033094	6.30529356	6.30529356
-0.00953017	0.74000335	-1.60779512	1.88100445
-0.00382637	0.57072055	-1.17243278	1.32609236
-0.00016793	0.39744040	-0.71563292	0.82678801
0.00062784	0.52034736	-0.85654873	1.11210728
-0.00000143	0.22762474	-0.35643440	0.44961619
-0.00020698	0.14914675	-0.17599730	0.28826970
-0.00014462	0.07949657	-0.09983830	0.15199120
-0.00021678	0.07759106	-0.11688780	0.14435400
-0.00011440	0.03198550	-0.06418030	0.05997020
0.0000534	0.02309710	-0.06537880	0.08025720
0.00026830	0.00800052	-0.02782550	0.02934820
0.00070504	0.00932394	-0.02700320	0.02524080
0.00056112	0.00804087	-0.05450010	0.01298910
0.00114619	0.00828606	-0.00978450	0.08045830
-0.00052190	0.00812550	-0.06155470	0.01021010
0.00096459	0.00694588	-0.00888760	0.04014310
0.00022052	0.00558620	-0.01030950	0.00918710
0.00033041	0.00589143	-0.01310710	0.01515460
0.00025516	0.00500442	-0.00770330	0.00900730
0.0000048	0.0000000	0.0000048	0.0000048
0.0000003	0.00000782	-0.00009227	0.00008285
-0.0000006	0.0000568	-0.00007927	0.00005758
-0.0000008	0.0000453	-0.00007856	0.00003415
	6.30496264 -0.00953017 -0.00382637 -0.00016793 0.00062784 -0.00000143 -0.00020698 -0.00014462 -0.00011440 0.00000534 0.00026830 0.00070504 0.00026830 0.00070504 0.00056112 0.00114619 -0.00052190 0.00096459 0.00022052 0.00033041 0.00025516 0.00000048 0.00000048 0.00000048	6.30496264 0.00033094 -0.00953017 0.74000335 -0.00382637 0.57072055 -0.00016793 0.39744040 0.00062784 0.52034736 -0.00000143 0.22762474 -0.00020698 0.14914675 -0.00014462 0.07949657 -0.00021678 0.07759106 -0.00011440 0.03198550 0.0000534 0.02309710 0.00026830 0.00800052 0.00070504 0.00932394 0.00056112 0.00828606 -0.00052190 0.00812550 0.00096459 0.00694588 0.0002052 0.00558620 0.00033041 0.00589143 0.00025516 0.000000442	6.304962640.000330946.30529356-0.009530170.74000335-1.60779512-0.003826370.57072055-1.17243278-0.000167930.39744040-0.715632920.000627840.52034736-0.85654873-0.000001430.22762474-0.35643440-0.000206980.14914675-0.17599730-0.000144620.07949657-0.09983830-0.000216780.07759106-0.11688780-0.000114400.03198550-0.064180300.00005340.02309710-0.065378800.000268300.0080052-0.027825500.000705040.00932394-0.027003200.000561120.00812550-0.061554700.000964590.00694588-0.00978450-0.000521900.00589143-0.013107100.000255160.00500442-0.007703300.000000480.00000000.00000480.00000030.0000782-0.0009227-0.00000060.0000568-0.0007927

~

dt5	-0.0000017		-0.00019383	0.00007170
dt6	-0.0000017		-0.00019750	0.00008839
dt7	-0.0000054		-0.00051940	0.00018780
dt8	-0.0000043		-0.00060130	0.00036010
dt9	-0.0000025		-0.00208550	0.00076390
dt10	0.0000087		-0.00359640	0.00276280
dt11	0.00001232		-0.00276430	0.01712380
dt12	0.0000802		-0.00986730	0.00709600
dt13	-0.0000051		-0.00953960	0.00549600
dt14	0.00001854		-0.00441390	0.01323000
dt15	-0.00004195		-0.01266470	0.00452640
dt16	0.00001029		-0.00293140	0.00632640
dt17	0.00000449	0.00079936	-0.00997620	0.01415670
dt18	-0.00000724	0.00038301	-0.00719460	0.00491180
dt19	0.00000661	0.00007952	-0.00060410	0.00075570
dt20	0.0000077	0.00005681	-0.00033320	0.00051780
Normalize	d			
FAC7	0.0000008	0.0000000	0.0000008	0.0000008
dt2	0.0000007	0.00001470	-0.00017333	0.00015564
dt3	-0.0000014	0.00001334	-0.00018623	0.00013526
dt4	-0.0000026	0.00001418	-0.00024570	0.00010682
dt5	-0.0000040	0.00002066	-0.00045090	0.00016680
dt6	-0.0000086	0.00004572	-0.00101003	0.00045205
dt7	-0.0000396	0.00015250	-0.00383924	0.00138815
dt8	-0.00000596	0.00028455	-0.00838324	0.00502049
dt9	-0.0000365	0.00063786	-0.03026020	0.01108403
dt10	0.00003065	0.00264342	-0.12744309	0.09790339
dt11	0.00060872	0.01459237	-0.13653105	0.84575814
dt12	0.00123823	0.03504863	-1.52296805	1.09523165
dt13	-0.00006120	0.03454603	-1.15420711	0.66496730
dt14	0.00260983	0.07179526	-0.62127244	1.86217058
dt15	-0.00586633	0.07507097	-1.77087688	0.63291633
dt16	0.00148966	0.04320403	-0.42418355	0.91545123
dt17	0.00073377		-1.63135839	2.31497478
dt18	-0.00148039	0.07828456	-1.47052312	1.00393558
dt19	0.00127036	0.01527329	-0.11602344	0.14513978
dt20	0.00017693	0.01308114	-0.07672276	0.11922884

The difference in midnight temperatures for each layer generally increases with depth, except for the deepest few layers.

Mean and stddev NEED TO DO ABS ______ End of input: testKofT.tex ____

6 Liens on KRC system or code

2009??

Check T_s oscillation when have night frost tdisk.f:: type 5x except 52 need to be updated

Input: liens.txt

Geophysical liens

No explicit H2O condensation

Coding Limitations

Only one binary output format at a time.

```
Surface Properties
1 ALB Surface albedo
2 EMIS Surface emissivity
3 SKRC Surface thermal inertia [J m<sup>-2</sup> s<sup>-1/2</sup> K<sup>-1</sup>] { cal cm * 4.184e4}
23 SLOPE Ground slope, degrees dip. MUST NOT slope beyond pole.
24 SLOAZI Slope azimuth, degrees east from north
15 TDEEP Fixed bottom temperature. Used if IB<=1.
7 SPHT Surface specific heat [J/Kg/K] {cal/g/K * 4184.}
8 DENS Surface density [kg/m<sup>3</sup>] {g/cubic cm. *10}
4 COND2 Lower material conductivity (IC>0)
5 DENS2 Lower material density (IC>0)
16 SPHT2 Lower material specific heat (IC>0)
Atmospheric Properties
9 CABR Atmospheric infrared back radiation coefficient
10 ABRAMP Amplitude of diurnal variation of CABR
11 ABRPHA Phase of ABRAMP, degrees relative to midnight.
12 PTOTAL Global annual mean surface pressure at 0 elev., Pascal[=.01mb]
13 FANON Mass-fraction of mean atmosphere that is non-condensing
14 TATM Atm temp for scale-height calculations
Dust & Slope Properties
17 TAUD Mean visible opacity of dust, solar wavelengths
18 DUSTA Single scattering albedo of dust
21 ARC2 Henyey-Greenstein asymmetry factor
 moon = eclipse start time in local Hours
22 ARC3 coeff. for planetary heating
 moon = eclipse duration in seconds 0=no eclipse
19 TAURAT Ratio of thermal to visible opacity
20 TWILI Twilight extension angle [deg]
Frost Properties
25 TFROST Minimum Frost saturation temperature
 may be overridden by local saturation temperature (LVFT)
26 CFROST Frost latent heat [J/Kg] {cal/gm*4184. [Not used if
27 AFROST Frost albedo, may be overridden (LVFA) [ TFROST never
28 FEMIS Frost emissivity
                       [ reached
29 AF1 constant term in linear relation of albedo to solar flux
30 AF2 linear term in relation of albedo to solar flux units=1/flux
  Afrost = AF1 + AF2 * <cos incidence> SOLCON / DAU^2
31 FROEXT Frost required for unity scattering attenuation coeff. [Kg/m<sup>2</sup>]
32 fd32 spare
Thermal Solution Parameters
33 RLAY Layer thickness ratio
34 FLAY First layer thickness (in skin depths)
35 CONVF Safety factor for classical numerical convergence
O for no binary time division of lower layers
>0 for binary time division
36 DEPTH Total model depth (scaled) (overrides FLAY if not 0.)
```

37 DRSET Perturbation factor in jump convergence. If = 0., then all layers reset to same average as surface layer. 38 DDT Convergence limit of temperature 2nd differences 39 GGT Convergence test: RMS layer T changes in a day, and del_T surface each time step 40 FDOWN Mass ratio factor for grid motion (enabled by IDOWN) Orbit Geometry & Constants 6 PERIOD Length of solar day in days (of 86400 seconds) 46 SOLCON Solar constant Applied Optics 1977 v.16, p.2693: 1367.9 W/m² 47 GRAV Surface gravity. MKS-units 41 DJUL Starting Julian date of run (N5>0) 42 DELJUL Increment between seasons in Julian days (N5>1) 43 SDEC Solar declination in degrees. (N5=0) 44 DAU Distance from Sun in astronomical units (N5=0) 45 SUBS Aerocentric longitude of Sun, in degrees. (for printout only) 48 fd48(13) Spare

_____ End of input: liens.txt

7 Code details

Input: code.tex

deding2.f has inputs of: OMEGA dust single scattering albedo GO dust asymmetry parameter ASUR surface albedo COSI cosine of incidence angle

TAU dust vertical opacity

and outputs:

BOND Planetary (atm plus surface system) albedo COLL Direct beam at bottom = collimated + aureole RI [2,2] Diffuse irradiances: $[1,=I_0 = \text{isotropic} \quad [2,=I_1 = \text{asymmetric} \quad ... End of input: code.tex \quad ...$

8 IDL interface

Development of an IDL interface to the Fortran KRC thermal Model System

2002March01 Hugh Kieffer, Kris Becker.

Source file locations:

IDL top procedure	/home/hkieffer/idl/tes/KRC/topkrc.pro
IDT to Fortran wrapper	/home/hkieffer/idl/externals/krcw.c
C:Fortran interface	/home/hkieffer/idl/externals/idlkrc.h
Fortran top function	/home/hkieffer/krc/tes/idlkrc.f

Fortran simulator for IDL /home/hkieffer/krc/tes/idummy.f

Makefile

Read for initialization /home/hkieffer/krc/tes/idldummy.inp

Fortran common definitions /home/hkieffer/krc/tes/*.inc

9 Development notes

Input: notes.tex

/home/hkieffer/krc/tes/Makefile

Partial scattered notes made during development and test

9.0.1 2003jan23

Notes following tutorial for Robin Fergeson, Josh Bandfield and Tim Titus.

One-point model temperatures are influenced by elevation if the opacity is >0Note, negative opacities can cause very long (infinite?) run times.

If N5=0, then the values entered for DAU and SEDC are used for a single season.

If KPREF=2 and N4>8, then will do global condensed frost integration, in which case you better have input a reasonable set of montonically increasing latitudes.

The stored times-of-day are such that the last one is "midnight". E.g., Hour 1 is 1/24 of a sol after midnight. (in tday.f, see use of JJH)

Frost amount units are kg/m^2

Minor code changes to insure non-negative TAUD and DRSET, and to avoid opening output binary file if it would not be written to.

9.0.2 2004jul05

Desire to output the heatflow into the bottom of a frost layer This would require output of DAYCOM for every latitude and season. Decide to define a new common to contain simply this information. define Array (# latitudes, # seasons, # models) Then bin5 output only the defined part.

In TDAY, isolate the heat conduction term at the surface. Requires a counter for model! In TDISK, write new section for KODE=54 Actually: move all dimension-defining parameters from other commons into KRCCOM, and create new hatcom.inc to hold new items

9.0.3 2004Jul11

There is a new version of KRC which can output the daily average upward heatflow into the surface. This is intended for study of the ice caps. The file output is an additional style of .bin5, selected by K40UT=54

In the process, I somewhat modernized the code by moving all the dimension-defining parameters from other commons into KRCCOM and removing the

redundant definitions. I also added a new common, hatcom.inc, to transfer the new items between routines; I am reluctant to change any sizes in the existing commons because the C code used to read them into IDL can tolerate no mismatch in dimensions. This common would be the place to add other additional items.

As far as I know, the new version is backward-compatible with the circa 2002 version that was distributed to Robin.

I would like to get some mileage on this new code before distributing it.

I checked, and the frost temperature does change if KPREF and LVFT are set properly.

9.0.4 2006sep09

Design for allowing seasonally variable albedo and TauD

Without changing sizes of common, there are few places available for control values. Choose to use ID22 indicate variable soil surface (not frost) albedo and 23 to indicate variable soil Taud. O will mean they are not variable. Files of text table of value versus season can be read at the start of a run. These will apply to ALL latitudes.

Requires logical unit to read file, closes before return Requires additional file names, read via fcard. requires a way to know how many season points are used.

Implimentation is complex. but can turn these variable features on and off:

To start variable albedo, input card 8 22 0 'AlbedoFileName' / Variable albedo text file name Can revert to constant albedo by hokey technique of giving it bad name. E.g., 8 22 0 'badName' / turn variable albedo off

Variable Tau done the same way, with 22 being replaceed with 23

Found code error in tcard.f REAL*4 LSUBS ! function should have been ALSUBS

9.0.5 2009mar11

Test1: same results for constant K

loadt CONUP0:CONLO3 to be constant at same value as L10=0 case

dtimes

0.0290
0.0360
0.0290

Output in work1/krc/mars/kot3.t52

IDL program qk to test differences.

Number of convergence days differs by 1 for ??

Do the following for top and lower layers

- 1) decide on input paramters that influence **k** of T
- 2) run either kotab.f or spspread.pro to generate k of T table
- 3) fit cubic function for scaled x=0.015*(T-220) koftfit.pro
- 4) transfer 4 coefficients into krc input file

9.0.6 2009dec24

Decide to elimiate conflicting use or PERIOD and PI by changing porbcm.inc and all that reference it. Then will be able to reference it in tseas and tyearp.

PERIOD >> OPERIOD and PI >> PICON Need to modify: porbcm.inc tseas.f tyearp.f ephemr.f porb1.f porb.f porbin.f porbmn.f porbqq.f Remove probdi and porbls as obsolete porbin.f is not used??

9.0.7 2010jan09

run KofT compare after resetting upper I to 7 decimal places

fix tday.f to recompute fac7 make krc

modify master.inp
run krc
DTIME 2.2677 3.4385

IDL .rnew lookrc 11 52

9.0.8 2010jan22

Checking hoe one-point mode switch occurs: TCARD(1 called only by KRC in single place TCARD(2 called by KRC(2 places) and TSEAS (1 place)

When change card 10 encountered, tcard renames FINPUT and sets IR=4 Card 10 should only be used after the initial full parameter block.

then krc, when it gets IR=4, will switch input files (close old, open new) read the first line of new file and write that to IOSP, and read the second line of input file (ignored) and write a column header line to ISOP.

____ End of input: notes.tex __

Input: /home/hkieffer/krc/tes/puzzels

```
master.t52 shows DOWNVIS delta one day later than the other four.
@44 CHART,y3[1700:1800,*],parti=ita
```

Examine: in tday.f

```
294: ATMRAD= FAC9*TATMJ**4 ! hemispheric downwelling IR flux
298: POWER = (1.-A)*ASOL(JJ) + FAC6F*ATMRAD
309: ABRAD = FAC3*ASOL(JJ) + FAC6*ATMRAD ! surface absorbed radiation
355: DOWNIR(IH,J4)=ATMRAD ! save downward IR flux
298: POWER = (1.-A)*ASOL(JJ) + FAC6F*ATMRAD
309: ABRAD = FAC3*ASOL(JJ) + FAC6F*ATMRAD
309: ABRAD = FAC3*ASOL(JJ) + FAC6*ATMRAD ! surface absorbed radiation
354: DOWNVIS(IH,J4)=ASOL(JJ) ! save downward solar flux
```

so DOWNIR based on current TATM whereas DOWNVIS based in inputs from TLATS which uses albedo at the beginning of season. So, if frost flag stored at a season if different between two runs, DOWNVIS can be quite different the next season.

```
t55 tbot ldelts up to 3K
t52 hows lowest layer T Delta<0.5
ttt siq2=.026
uuu ==0
vvv== 0
ddd sig2=.049
ggg siq2 .038
   _____
  Return from tcard.
                                     Conditions
1 re-start fresh
                                Called with IQ=1
2 read a existing file record
                               KOLD>O
3 continue from memory
                              read 2 >20 x AND IR .ne.2
4 go to one-point mode
                               read a one.inp file name
5 stop
                                 successive 0/
Need way to set ultimate number of seasons for TDISK
J5
JDISK
JBARE
IDISK2
_____
All fixed by recompile all
seems to not be using latest disk
WRITE(*,*)'Idx,JJJ=',IDX,JJJ
Idx,JJJ= 5 24 7 4 42 0 0 4 30 0 does not include IDX
```

Initiated custom output: K40UT= 52

JJJ= 5 24 7 4 41 0 0 4 30 0 Idx,JJJ= 5 24 7 4 42 0 0 4 30 0 MMM= 24 168 672 27552 0 0 KOMMON, KASE, MASE, MTOT= 1056720 28224 37 1044288 screen: N4= 19 N4,jjj= 19 5 24 7 19 40 0 0 4 30 0 IDX = 4NDX,K= 1 451 Idx,JJJ= 4 5 24 7 19 41 0 0 4 30 0 MMM= 24 168 3192 127680 0 0 Segmentation fault bin5 contorl has 4 lats whereas 19 specified convergence layer 16 mis prints did not run 2nd case 5 24 2 4 44 1 4 8448 512 << 2009 Feb 24 08:20:38 bhead kot3.t51 5 24 7 4 42 3 4 84672 512 << 2009 Feb 24 07:47:04 bhead kot3.t52 bhead kot3.t54 4 41 5 6 1 4 1230 512 << 2009 Feb 24 08:20:38 3 41 17 1 4 697 512 << 2009 Feb 24 08:20:38 bhead kot3.t55 bhead kot3.t56 4 71 4 43 1 4 12212 512 << 2009 Feb 24 08:20:38 remove files, rerun, get proper sizes. -rwxr--r-- 1 hkieffer 49360 Feb 24 08:26 kot3.t56* 5432 Feb 24 08:26 kot3.t54* -rwxr--r-- 1 hkieffer -rwxr--r-- 1 hkieffer 339200 Feb 24 08:26 kot3.t52* -rwxr--r-- 1 hkieffer 34304 Feb 24 08:26 kot3.t51* 3300 Feb 24 08:26 kot3.t55* -rwxr--r-- 1 hkieffer So. BINF5 must overwrite old file if there is room

____ End of input: /home/hkieffer/krc/tes/puzzels _

10 files to consider

GCMcompare.txt

11 Make notes

98may26 In tdisk.f, the units of RECL depend upon compiler options.

E.g., Sun Fortran; units are bytes (ANSII standard?) if -xl[d] is not set, and 4-byte words if it is set. For Linux, the units seem to be bytes.

2010jan gfortran produces warnings: In file tcard.f:52 & ,'SPEC_HEAT','DENSITY','CABR','AMW','ABRPHA','PTOTAL','FANON' !7 1 Warning: initialization string truncated to match variable at (1) However, seems to have defined the entire array properly